Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

Abstract

General Description The MAX4465-MAX4469 are micropower op amps optimized for use as microphone preamplifiers. They provide the ideal combination of an optimized gain bandwidth product vs. supply current, and low voltage operation in ultra-small packages. The MAX4465/ MAX4467/MAX4469 are unity-gain stable and deliver a 200 kHz gain bandwidth from only $24 \mu \mathrm{~A}$ of supply current. The MAX4466/MAX4468 are decompensated for a minimum stable gain of $+5 \mathrm{~V} / \mathrm{V}$ and provide a 600 kHz gain bandwidth product. In addition, these amplifiers feature Rail-to-Rail® outputs, high Avol, plus excellent power-supply rejection and common-mode rejection ratios for operation in noisy environments. The MAX4467/MAX4468 include a complete shutdown mode. In shutdown, the amplifiers' supply current is reduced to 5 nA and the bias current to the external microphone is cut off for ultimate power savings. The single MAX4465/MAX4466 are offered in the ultra-small 5-pin SC70 package, while the single with shutdown MAX4467/MAX4468 and dual MAX4469 are available in the space-saving 8-pin SOT23 package.

Applications

Microphone Preamplifiers
Hearing Aids
Cellular Phones
Voice-Recognition Systems
Digital Dictation Devices
Headsets
Portable Computing
Pin Configurations
TOP VIEW

Pin Configurations continued at end of data sheet.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

- +2.4V to +5.5 V Supply Voltage Operation
- Versions with 5nA Complete Shutdown Available (MAX4467/MAX4468)
- Excellent Power-Supply Rejection Ratio: 112dB
- Excellent Common-Mode Rejection Ratio: 126dB
- High Avol: 125dB (RL=100k)
- Rail-to-Rail Outputs
- Low $24 \mu \mathrm{~A}$ Quiescent Supply Current
- Gain Bandwidth Product:

200kHz (MAX4465/MAX4467/MAX4469)
600kHz Av ≥ 5 (MAX4466/MAX4468)

- Available in Space-Saving Packages

5-Pin SC70 (MAX4465/MAX4466)
8-Pin SOT23 (MAX4467/MAX4468/MAX4469)
Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4465EXK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SC70-5
MAX4465EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5
MAX4466EXK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SC70-5
MAX4466EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5

Ordering Information continued at end of data sheet.
Typical Operating Circuit

MAX4467/MAX4468 TYPICAL OPERATING CIRCUIT WITH COMPLETE SHUTDOWN

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

ABSOLUTE MAXIMUM RATINGS	
Supply Voltage (VCC to GND).. V to (VC +0.3 V)All Other Pins to GND.........	
Output Short-Circuit Duration	
OUT Shorted to GND or VCC	Continuous
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
5 -Pin SC70 (derate $2.5 \mathrm{~mW} /{ }^{\circ}$	$70^{\circ} \mathrm{C}$) 200 mW
5 -Pin SOT23 (derate 7.1 mV	$\left.70^{\circ} \mathrm{C}\right)571 \mathrm{~mW}$

8-Pin SOT23 (derate $5.3 \mathrm{~mW} /$ 8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$.471 \mathrm{~mW}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$.65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
	+300

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=\infty\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2$, SHDN $=\mathrm{GND}\left(\mathrm{MAX} 4467 / \mathrm{MAX} 4468\right.$ only) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values specified at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Supply Voltage Range	VCC	Inferred from PSRR test	2.4	5.5	V
Supply Current (Per Amplifier)	Icc	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	24	48	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		60	
Supply Current in Shutdown	ISHDN	SHDN = VCC (Note 2)	5	50	nA
Input Offset Voltage	Vos		± 1	± 5	mV
Input Bias Current	IB	$V_{C M}=-0.1 \mathrm{~V}$	± 2.5	± 100	nA
Input Offset Current Range	Ios	$V_{C M}=-0.1 \mathrm{~V}$	± 1	± 15	nA
Input Common-Mode Range	V_{CM}	Inferred from CMRR test	-0.1	VCC-0.1	V
Common-Mode Rejection Ratio	CMRR	$-0.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\text {CC }}-1 \mathrm{~V}$	$80 \quad 126$		dB
Power-Supply Rejection Ratio	PSRR	$2.4 \mathrm{~V} \leq \mathrm{V}_{\text {cc }} \leq 5.5 \mathrm{~V}$	$80 \quad 112$		dB
		MAX4465/MAX4467/MAX4469, $\mathrm{f}=3.4 \mathrm{kHz}$	75		
		MAX4466/MAX4468, $\mathrm{f}=3.4 \mathrm{kHz}$	80		
Open-Loop Gain	Avol	$\begin{aligned} & R_{L}=100 \mathrm{k} \Omega \text { to } V_{C C} / 2, \\ & 0.05 \mathrm{~V} \leq V_{\text {OUT }} \leq V_{C C}-0.05 \mathrm{~V} \end{aligned}$	125		
		$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} / 2, \\ & 0.1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	8095		
Output Voltage Swing High	VOH	IVCC - $\mathrm{VOH}_{\text {O }}$	10		mV
			16	50	
Output Voltage Swing Low	VoL	$\mathrm{RL}=100 \mathrm{k} \Omega$	10		mV
		$\mathrm{RL}=10 \mathrm{k} \Omega$	14	50	
Output Short-Circuit Current		To either supply rail	15		mA
Output Leakage Current in Shutdown		$\begin{aligned} & \text { SHDN }=\mathrm{V}_{\mathrm{CC}}, 0 \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}} \text {; } \\ & (\text { Notes 2, 3) } \end{aligned}$	± 0.5	± 100	nA
SHDN Logic Low	V_{IL}	(Note 2)	$\mathrm{V}_{\mathrm{CC}} \times 0.3$		V
SHDN Logic High	V_{IH}	(Note 2)	$V_{C C} \times 0.7$		V
SHDN Input Current		(Note 2)	2	25	nA
Gain Bandwidth Product	GBWP	MAX4465/MAX4467/MAX4469	200		kHz
		MAX4466/MAX4468	600		

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{C M}=0, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{C C} / 2, \mathrm{R}_{\mathrm{L}}=\infty\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{SHDN}=\mathrm{GND}$ (MAX4467/MAX4468 only), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values specified at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Channel-to-Channel Isolation		MAX4469 only, $\mathrm{f}=1 \mathrm{kHz}$		85		dB
Phase Margin	\varnothing_{M}	$\mathrm{RL}=100 \mathrm{k} \Omega$		70		degrees
Gain Margin		$\mathrm{RL}=100 \mathrm{k} \Omega$		20		dB
Slew Rate	SR	Output step $=4 \mathrm{~V}$	MAX4465/MAX4467/ MAX4469, $A \mathrm{~V}=+1$	45		$\mathrm{mV} / \mu \mathrm{s}$
			MAX4466/MAX4468, $A V=+5$	300		
Input Noise Voltage Density	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$		80		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	THD	$\begin{aligned} & f=1 \mathrm{kHz}, R \mathrm{R}=10 \mathrm{k} \Omega, \\ & \text { VOUT }=2 \mathrm{Vp}-\mathrm{p} \end{aligned}$	MAX4465/MAX4467/ MAX4469	0.02		\%
			MAX4466/MAX4468	0.03		
Capacitive Load Stability	Cload	MAX4465/MAX4467/MAX4469, Av = +1		100		pF
		MAX4466/MAX4468, Av = +5		100		
SHDN Delay Time	tSHDN	(Note 2)		1		$\mu \mathrm{s}$
Enable Delay Time	ten	(Note 2)		50		$\mu \mathrm{s}$
Power-On Time	ton	(Note 2)		40		$\mu \mathrm{s}$
Bias Switch On-Resistance	RS	IS $=5 \mathrm{~mA}$ (Note 2)		20	500	Ω

Note 1: All specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: Shutdown mode is available only on the MAX4467/MAX4468.
Note 3: External feedback networks not considered.
Typical Operating Characteristics
$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{C M}=0, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{SHDN}=\mathrm{GND}$ (MAX4467/MAX4468 only), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

 noted.)

OUTPUT LEAKAGE CURRENT
vs. TEMPERATURE

OUTPUT VOLTAGE SWING HIGH
vs. TEMPERATURE

SHUTDOWN SUPPLY CURRENT
vs. TEMPERATURE

CHANNEL-TO-CHANNEL ISOLATION vs. FREQUENCY

OUTPUT VOLTAGE SWING LOW
vs. TEMPERATURE

SUPPLY CURRENT vs. TEMPERATURE

INPUT OFFSET VOLTAGE vs. TEMPERATURE

COMMON-MODE REJECTION RATIO
vs. TEMPERATURE

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{SHDN}=\mathrm{GND}(\mathrm{MAX4467/MAX4468}$ only$), \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX4465/MAX4467/MAX4469 TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY

MAX4466/MAX4468
TOTAL HARMONIC DISTORTION PLUS NOISE
vs. INPUT AMPLITUDE

MAX4466/MAX4468
TOTAL HARMONIC DISTORTION
vs. FREQUENCY

NONINVERTING SMALL-SIGNAL TRANSIENT RESPONSE

MINIMUM OPERATING VOLTAGE vs. TEMPERATURE

MAX4465/MAX4467/MAX4469 TOTAL HARMONIC DISTORTION PLUS NOISE vs. INPUT AMPLITUDE

NONINVERTING LARGE-SIGNAL TRANSIENT RESPONSE

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

$\left(V_{C C}=+5 V, V_{C M}=0, V_{\text {OUT }}=V_{C C} / 2, R_{L}=100 k \Omega\right.$ to $V_{C C} / 2, S H D N=G N D(M A X 4467 / M A X 4468$ only $), T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SINK CURRENT vs. OUTPUT VOLTAGE

Pin Description

PIN			NAME	
MAX4465 MAX4466	MAX4467 MAX4468	MAX4469		FUNCTION
4	$6(8)$		OUT	Amplifier Output
-	-	1	OUTA	Amplifier Output A
-	$1(4)$	-	MIC_BIAS	External Microphone Bias Network Switch Output
3	$2(3)$	-		Inverting Amplifier Input
1	$3(2)$	-	IN+	Noninverting Amplifier Input
2	$4(1)$	4	GND	Ground

[^0]
Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

Pin Description (continued)

PIN			NAME	FUNCTION
MAX4465 MAX4466	MAX4467 MAX4468	MAX4469		
5	7 (7)	8	VCC	Positive Supply. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor to GND.
-	-	2	INA-	Inverting Amplifier Input A
-	-	3	INA+	Noninverting Amplifier Input A
-	-	6	INB-	Inverting Amplifier Input B
-	-	5	INB+	Noninverting Amplifier Input B
-	-	7	OUTB	Amplifier Output B
-	8 (6)	-	SHDN	Active-High Shutdown Input. Connect to GND for normal operation. Connect to V_{CC} for shutdown. Do not leave floating.
-	5 (5)	-	N.C.	No Connection. Not internally connected.

() denotes SOT23 package of the MAX4467/MAX4468.

Detailed Description

The MAX4465-MAX4469 are low-power, micropower op amps designed to be used as microphone preamplifiers. These preamplifiers are an excellent choice for noisy environments because of their high commonmode rejection and excellent power-supply rejection ratios. They operate from a single +2.4 V to +5.5 V supply.
The MAX4465/MAX4467/MAX4469 are unity-gain stable and deliver a 200 kHz gain bandwidth from only $24 \mu \mathrm{~A}$ of supply current. The MAX4466/MAX4468 have a minimum stable gain of $+5 \mathrm{~V} / \mathrm{V}$ while providing a 600 kHz gain bandwidth product.
The MAX4467/MAX4468 feature a complete shutdown, which is active-high, and a shutdown-controlled output providing bias to the microphone. The MAX4465/ MAX4467/MAX4469 feature a slew rate suited to voice channel applications. The MAX4466/MAX4468 can be used for full-range audio, e.g., PC99 inputs.

Rail-to-Rail Output Stage

The MAX4465-MAX4469 can drive a $10 \mathrm{k} \Omega$ load and still typically swing within 16 mV of the supply rails. Figure 1 shows the output voltage swing of the MAX4465 configured with $\mathrm{Av}=+10$.

Switched Bias Supply

When used as a microphone amplifier for an electret microphone, some form of DC bias for the microphone is necessary. The MAX4467/MAX4468 have the ability to
turn off the bias to the microphone when the device is in shutdown. This can save several hundred microamps of supply current, which can be significant in low power applications. The MIC_BIAS pin provides a switched version of $\mathrm{V}_{C C}$ to the bias components. Figure 3 shows some typical values.

Driving Capacitive Loads

Driving a capacitive load can cause instability in many op amps, especially those with low quiescent current. The MAX4465/MAX4467/MAX4469 are unity-gain stable for a range of capacitive loads up to 100pF. Figure 4 shows the response of the MAX4465 with an excessive capacitive load.

Applications Information

Shutdown Mode

The MAX4467 and MAX4468 feature a low-power, complete shutdown mode. When SHDN goes high, the supply current drops to 5 nA , the output enters a high impedance state and the bias current to the microphone is switched off. Pull SHDN low to enable the amplifier. Do not leave SHDN floating. Figure 5 shows the shutdown waveform.

Common-Mode Rejection Ratio

A microphone preamplifier ideally only amplifies the signal present on its input and converts it to a voltage appearing at the output. When used in noninverting mode, there is a small output voltage fluctuation when both inputs experience the same voltage change in the

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

common mode. The ratio of these voltages is called the common-mode gain. The common-mode rejection ratio is the ratio of differential-mode gain to common-mode gain. The high CMRR properties of the MAX4465-MAX4469 provide outstanding performances when configured as a noninverting microphone preamplifier.

Power-Up
The MAX4465-MAX4469 outputs typically settle within $1 \mu s$ after power-up. Figure 6 shows the output voltage on power-up.

Power Supplies and Layout
The MAX4465-MAX4469 operate from a single +2.4V to +5.5 V power supply. Bypass the power supply with a $0.1 \mu \mathrm{~F}$ capacitor to ground. Good layout techniques are necessary for the MAX4465-MAX4469 family. To decrease stray capacitance, minimize trace lengths by placing external components close to the op amp's pins. Surface-mount components are recommended. In systems where analog and digital grounds are available, the MAX4465-MAX4469 should be connected to the analog ground.

Test Circuits/Timing Diagrams

Figure 1. Rail-to-Rail Output Operation

Figure 2. MAX4466 Typical Application Circuit

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

Figure 3. Bias Network Circuit

Figure 4. Small-Signal Transient Response with Excessive Capacitive Load

Figure 5. MAX4467/MAX4468 Shutdown Waveform

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

Figure 6. Power-Up/Power-Down Waveform

Chip Information
MAX4465/MAX4466 TRANSISTOR COUNT: 62
MAX4467/MAX4468 TRANSISTOR COUNT: 72
MAX4469 TRANSISTOR COUNT: 113
PROCESS: BiCMOS

Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4467EKA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT23-8
MAX4467ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4468EKA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT23-8
MAX4468ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX4469EKA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT23-8
MAX4469ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

Selector Guide

PART	MINIMUM STABLE GAIN	EXTERNAL MICROPHONE SHDN	GBWP $\mathbf{(k H z)}$	PIN-PACKAGE
MAX4465	+1	No	200	5 SC70/5 SOT23
MAX4466	+5	No	600	5 SC70/5 SOT23
MAX4467	+1	Yes	200	8 SOT23/8 SO
MAX4468	+5	Yes	600	8 SOT23/8 SO
MAX4469	+1	No	200	8 SOT23/8 SO

Pin Configurations (continued)

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

Package Information

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

14 \qquad

[^0]: () denotes SOT23 package of the MAX4467/MAX4468

